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Introduction: motivation and proposed solution



Decision Intelligence

Is Decision Intelligence The
New AI?
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Decision
Support

Decision
Augmentation

Decision
Automation

machines provide some basic tools
to support human decision making

~

)

machines play a larger and more
proactive role in the decision
process.

machines perform both the decision A

step and the execution step
autonomously.




Challenges for LLM-based Decision Making

* Hallucinations

* Noisy inference behavior

* Lack of trust

* Bad predictions and increased risks
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What If

Create an assisted Al decision-making tool Cognitive-LLM1
that combines neural-symbolic representations to encode
physical knowledge alongside machine learning models.

Cognitive-LLM aims to augment Al decision-making with
numan cognitive understanding and reflect how humans
nerceive and understand the world through cognition and
<nowledge.
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Relating cognitive Psychology to Develop
Human-Like Decision-Making Support Tool

(1) Use LLMs' neural representations in
behavioral psychological science research.

(2) Use cognitive psychology experiments to align
language models to the human like behaviors.

—
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Centaur?

* Foundation model trained on larger-scale human subject data for psychological
alignment.

» Data-expensive and computationally expensive experiment (160; 60,092)
* Lacks grounding in metacognition despite its size.

* This motivates us to support the development of human-like decision-making tools
for companies such as Bosch LLC's, to fine-tune LLMs for domain-specific human
like decision-making support tools.
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Decision Intelligence A Common Model of Cognition

* Cognitive Architectures are computational frameworks that capture the invariant mechanisms of human cognition,
including those underlying the functions of attention, control, learning, memory, adaptivity, perception and action

* A Cognitive Model is the software artifact resulting from using a Cognitive Architecture to model a human task

* The “Common Model of Cognition” is a recent development to consolidate four decades of research
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Analysis of the human connectome data
supports the notion of a “Common Model of
Cognition” for human and human-like
intelligence across domains
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ACT-R3: the Cognitive Architecture

* “Architecture” refers to the fundamental organizational principle of a complex cognition system.

* Modules to implement the fixed mechanisms of cognition
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Proposed Solution Cognitive LLMs

1 2 3 4

Neuro-Symbolic Cognitive Method

5
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| cogAgent curation transfer ;
Problem | — |
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i human like reason, plan, at scale. Key semantic features decision augmentation for tasks !
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= A combination of different techniques like ontology-based formalization, NLP, representation
psychometrics, are used to 1) model the symbolic components of the task, i.e.,
the declarative and procedural knowledge, and 2) set the sub-symbolic
parameters (e.g., learning rate, similarity matching).
= Before running simulations at scale, tests are conducted on adequacy of symbolic
and parametric representation
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Cognitive LLMs Prototype

A production line consists of two sections with
potential defect sources: pre-assembly and
assembly

4 N

Pre-assembly takes 40 seconds with an Overall

Equipment Effectiveness (OEE) rate of 88% A: | recommend

Cognitive LLM reducing the time

— , —{ Recommendations ]—» spentinthe
SHEu assembly section
Assembly, on the other hand, takes 44 seconds but L

...... based on the
- SIS following expert
E—. : rationale:

has a lower OEE rate of 80.1% == g

-

To achieve atotal assembly time reduction of 4
seconds, we need to identify which section can be
optimized with minimalimpact on defect rate

It's important to note that reducing cycle time will
also lead to an increase in line headcount cost
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Formulate Problems from Business Cases
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Production control
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Production System Handbook, Value Stream Map
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Define a Decision-Making Task

Decision space D={d1, d2}
Probability Model P(x), x={CT, OEE, HC, DR}
Loss function L(d, x)=W1 - ADR(d) + W2 - AHC(d)

Decisions  J* — arg 13_—1%1 Epx)[L(d, X)]
S
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An exemplar of using Cognitive-LLM* in

manufacturing decision making

(2) Build a Cognitive Model use ACT-R Cognitive Architecture for the Task
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(1) Define Decision-making Problems

Decision Problems:

Decision space: D={d1, d2}

Probability model: P(x), x={CT, OEE, HC, DR}
Q: Optimize loss:

L(d, x)=W1ADR(d1) + W2AHC(d2)
A:Decisions

Mapping

(a) Prompt Template

Gr manufacturing line \

has two sections with potential
defect sources: preassembly
and assembly.

Section 0, pre-assembly, takes X1
seconds with an OEE rate of Y1%,
while section 1, assembly, takes X2
seconds with an OEE rate of Y2%.

To reduce total production time by Input
4, we must identify which section |——»
can be shortened with minimal
defect increase. We note that
reducing cycle time will also lead
to an increase in headcount costs.

Q: Which section would you
choose?

Qsection [insert] /
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(3) Model Personas run at scale

symbolic

LTM long-term memory | ———»

WM working memory

A action systems

LLMs Attention Block

Casual attention  Contextualized

(b)

select

subsymbolic

VSM-ACTR Persona

(4) LLM-ACTR framework
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Cognitive Synthetic Agent: VSM-ACTR



VSM-ACTR* model’s Reason, Plan, and Learn

Reason Production rules for if-then actionable memory, each associated with utility;
Declarative chunks for factual memory

Egqn.1: Uj(n) =U;(n — 1)+ a|Ri(n) — U;(n — 1)]

Plan |If multiple productions compete with expected utility values, the probability of selecting
production is calculated use SoftMax function.

Reinforcement learning with metacognition

R is a reward function with customized incentives. e.g., rule-based, instance-based, or-hybrid.
VSM-ACTR use hybrid custom inventive where R(s, f(X))
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Learning mechanism

Goal

Memory

imaginal

Novice Production

Declarative

T

Rules

Intermediate
production Rules

Expert Production
Rules

Utility learning

Choose- decision

Reinforcement
reward
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Data collection and analyze



Data Collection

* \/'SM- ACTR’s reasoning steps in real time using a concurrent protocol.
e Data part ais a learned vector of decision-making steps.

e Data part b consists of numerically encoded, reinforced decisions
from VSM- ACTR

VS5M-ACTR full traces
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Data analysis for learned VSM-ACTR vector

Reduced Embedding Map of Full Traces from a VSM-ACTR one Trial
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Data analysis for VSM-ACTR decisions
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LLM-ACTR: A developing knowledge
transfer framework

BOSCH



Research Question

Can we transfer knowledge form cognitive models to LLMSs to reflect
how human understand the work through cognition and knowledge?

4/6/2025
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Attention block Decision Making Layer
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Learning a cognitive decision-making vector

V5M-ACTR full traces

0.000 GOAL

0.050 PROCEDURAL
0.100 PROCEDURAL
0.150 PROCEDURAL

4/6/2025

SET-BUFFER-CHUNK GOAL GOER NIL
PRODUCTION-FIRED CHOOSE-STRATEGY
PRODUCTION-FIRED DECIDE-BRUTE
PRODUCTION-FIRED ERUTE-DECISION

Dimensionality
Reduction

E 2
— —

Sentence
Transformer

28



Experiments

Baselines Pretrain, random guess, fine-tuned without a cognitive vector

Dataset Decision-making trials simulated on a large scale; held-out data
spared to assess performance on unseen problems.

Measurements Goodness of fit--Negative log likelihood and predictive
accuracy

4/6/2025
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Results

Chance level 0.6931 0.4836

Cognitive-LLM 0.6534 0.6576




Results

Negative Log-Likelihood

Box Plot of Negative Log-Likelihood

0.656 A

0.654 1

0.652 1

0.650 A

0.648 A

0.646 -

0.644 1

_— ® Mean Values

.6486

o

.6475

Fine-Tuning Only LLM-ACTR
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Take away

It is possible to transfer human like decision knowledge from cognitive
models to LLMs through activation engineering during the forward pass,
and by fine-tuning LLMs with reinforcement decisions.
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Summary

 Gold

This study extends previous
research in applying large-scale
cognitive psychology data to align
human-like behaviors in language
models. Demonstrates the
feasibility of transferring
knowledge from cognitive models
to LLMs through the developing
knowledge transfer framework
LLM-ACTR.
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* Trustworthiness of the cognitive
synthetic agent.

* Generalization.
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Future Work Out of Domain Generalization

For
Expanded decision space D ={d1, d, ..., dn}
Complex probability model P(x), x = {x1, x2, ..., Xn} ?

Human like decisions =» guided perception, memory, and goal-setting

4/6/2025
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Cognitive multi-agent system?® in decision support

4/6/2025
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Agent

User

Our manufacturing line
has X sections with potential defect sources.
probability model P(x), x = {x1, x2, ..., xn}

To reduce total production time by Y, we must
identify which section can be shortened with
minimal defect increase. We note that reducing cycle
time will also lead to an increase in headcount costs.
Q: Which section would you choose? A:
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