LLM-ACTR: from Cognitive Models to LLMs in Manufacturing Solutions

Siyu Wu, Alessandro Oltramari, Jonathan Francis, C. Lee Giles, Frank E. Ritter

4/6/2025

Agenda

Motivation and proposed solution

Formulate problems from business cases

Cognitive synthetic agent: VSM-ACTR

Data collection and analyze

LLM-ACTR: a developing knowledge transfer framework

Future work

References

Acknowledgement

Introduction: motivation and proposed solution

Decision Intelligence

FORBES > INNOVATION

Is Decision Intelligence The New AI?

Pascal Bornet Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-Based)

May 25, 2022, 08:00am EDT

Decision Support

Decision

Augmentation

Decision

Automation

Pascal Bornet is an expert in AI and Automation, best-selling author, keynote speaker, and CDO at Aera Technology.

 \mathbb{X}

in

GETTY

machines provide some basic tools to support human decision making

machines play a larger and more proactive role in the decision process.

machines perform both the decision step and the execution step autonomously.

ICT-067 | Alessandro Oltramari- 07.17.2024

Challenges for LLM-based Decision Making

- Hallucinations
- Noisy inference behavior
- Lack of trust
- Bad predictions and increased risks

What If

Create an assisted AI decision-making tool **Cognitive-LLM¹** that combines neural-symbolic representations to encode physical knowledge alongside machine learning models.

Cognitive-LLM aims to augment AI decision-making with human cognitive understanding and reflect how humans perceive and understand the world through cognition and knowledge.

Relating cognitive Psychology to Develop Human-Like Decision-Making Support Tool

(1) Use LLMs' neural representations in behavioral psychological science research.

(2) Use cognitive psychology experiments to align language models to the human like behaviors.

Centaur²

- Foundation model trained on larger-scale human subject data for psychological alignment.
- Data-expensive and computationally expensive experiment (160; 60,092)
- Lacks grounding in metacognition despite its size.
- This motivates us to support the development of human-like decision-making tools for companies such as Bosch LLC's, to fine-tune LLMs for domain-specific human like decision-making support tools.

Decision Intelligence A Common Model of Cognition

- **Cognitive Architectures** are computational frameworks that capture the invariant mechanisms of human cognition, including those underlying the functions of attention, control, learning, memory, adaptivity, perception and action
- A *Cognitive Model* is the software artifact resulting from using a Cognitive Architecture to model a human task
- The "Common Model of Cognition" is a recent development to consolidate four decades of research

NeuroImage Volume 235, 15 July 2021, 118035

Analysis of the human connectome data supports the notion of a "Common Model of Cognition" for human and human-like intelligence across domains

<u>Andrea Stocco</u>^a <u>A</u> <u>S</u>, <u>Catherine Sibert</u>^a, <u>Zoe Steine-Hanson</u>^{b 1}, <u>Natalie Koh</u>^{c 2}, <u>John E. Laird</u>^d, <u>Christian J. Lebiere</u>^e, <u>Paul Rosenbloom</u>^f

ACT-R³: the Cognitive Architecture

- "Architecture" refers to the fundamental organizational principle of a complex cognition system.
- Modules to implement the fixed mechanisms of cognition

Perceptual/Motor layer Cognition layer Attention Vision location manager Pixels or symbols Production Target of memory attention Motor Clicks. keypresses manager Core Audio Environment Speech manager Raw audio.-or symbols Declarative memory Target of attention Auditory manager

Productions, if-then rules, actionable memory

Chunks, factual memory, slot-value pairs

Proposed Solution Cognitive LLMs

Cognitive LLMs Prototype

A production line consists of two sections with potential defect sources: pre-assembly and assembly

Pre-assembly takes 40 seconds with an Overall Equipment Effectiveness (OEE) rate of 88%

Assembly, on the other hand, takes 44 seconds but has a lower OEE rate of 80.1%

To achieve a total assembly time reduction of 4 seconds, we need to identify which section can be optimized with minimal impact on defect rate

It's important to note that reducing cycle time will also lead to an increase in **line headcount** cost

Formulate Problems from Business Cases

Production System Handbook, Value Stream Map

Define a Decision-Making Task

An exemplar of using Cognitive-LLM¹ in manufacturing decision making

Cognitive Synthetic Agent: VSM-ACTR

VSM-ACTR⁴ model's Reason, Plan, and Learn

Reason Production rules for if-then actionable memory, each associated with utility; Declarative chunks for factual memory

 $Eqn.1: U_i(n) = U_i(n-1) + \alpha [R_i(n) - U_i(n-1)]$

Plan If multiple productions compete with expected utility values, the probability of selecting production is calculated use SoftMax function.

Reinforcement learning with metacognition

R is a reward function with customized incentives. e.g., rule-based, instance-based, or-hybrid. VSM-ACTR use hybrid custom inventive where R(s, f(x))

Learning mechanism

A telime-real ch	clit - GNUL Emacs at EVENITSO.W	100712	_	п	×
G sinte-reprise		N. Decembring Line Trees Hole			~
File Edit Option	ns Buffers Tools SLIME REI	PL Presentations Lisp Trace Help			
		3			
Polling "c:/	Users/sfw5621/AppData	a/Local/Temp/slime.17096" 1	7 (Abort	with	'M-XS
slime-abort	L-connection'.)	(Tocol/momp/clime_170068 11) /Showt		1M
slime-abort	-connection'.)	a/Local/Temp/Slime.17096" 10	(ADOIL	WICH	-M-X.
Connecting t	to Swank on port 63193	3			
Connected. H	lacks and glory await!				
You can run	the command 'slime-lo	bad-file' with C-c C-l			
Т					
Making compl	letion list				
You can run	the command 'slime-lo	bad-file' with C-c C-1			
T D					
L					
1\%*- *Mes:	sages* Bot L29	(Messages)			
ISICON-HIST	TORY : 3.1	Module to record visicon cha	anges.		1
VISION	: 10.1	A module to provide a model	with a v	visual	atte
ention syste	Em				
	adian of ACT D 7 is	inte dididid			
TTTTTTTTT LA	auting of Act-K / 15 C	rombrece #########			
CL-USER> (ru	in 10)				
0.000	GOAL	SET-BUFFER-CHUNK GOAL GOER	NIL		
0.050	PROCEDURAL	PRODUCTION-FIRED CHOOSE-ST	RATEGY		
0.100	PROCEDURAL	PRODUCTION-FIRED DECIDE-BR	JTE		
0.150	PROCEDURAL	PRODUCTION-FIRED BRUTE-STRA	ATEGY		
0.07999998					
0.350	IMAGINAL	SET-BUFFER-CHUNK-FROM-SPEC	IMAGINAI	6	
0.400	PROCEDURAL	PRODUCTION-FIRED BRUTE-CHO	ICE2		
choose assen	able has better stable	e output!			
0.450	PROCEDURAL	PRODUCTION-FIRED REHEADCOUN	N.T.		
-0.0188888					1
11++ +-14-	ma-wani abait 168 r	70 (DEDI adas)			

start with beginner strategy

-0

Data collection and analyze

Data Collection

• VSM- ACTR's reasoning steps in real time using a concurrent protocol.

- Data part a is a learned vector of decision-making steps.
- Data part b consists of numerically encoded, reinforced decisions from VSM- ACTR

VSM-ACTR full traces

0.000	GOAL	SET-BUFFER-CHUNK GOAL GOER NIL
0.050	PROCEDURAL	PRODUCTION-FIRED CHOOSE-STRATEGY
0.100	PROCEDURAL	PRODUCTION-FIRED DECIDE-BRUTE
0.150	PROCEDURAL	PRODUCTION-FIRED BRUTE-DECISION

Data analysis for learned VSM-ACTR vector

Data analysis for VSM-ACTR decisions

LLM-ACTR: A developing knowledge transfer framework

Research Question

Can we transfer knowledge form cognitive models to LLMs to reflect how human understand the work through cognition and knowledge?

4/6/2025

Learning a cognitive decision-making vector

VSM-ACTR full traces

FFER-CHUNK GOAL GOER NIL
CTION-FIRED CHOOSE-STRATEGY
CTION-FIRED DECIDE-BRUTE
CTION-FIRED BRUTE-DECISION

...

Experiments

Baselines Pretrain, random guess, fine-tuned without a cognitive vector

Dataset Decision-making trials simulated on a large scale; held-out data spared to assess performance on unseen problems.

Measurements Goodness of fit--Negative log likelihood and predictive accuracy

Results

Model	NLL	Accuracy
Chance-level	0.6931	0.4836
LlaMa	1.1330	0.3564
Cognitive-LLM	0.6534	0.6576

Results

Take away

It is possible to transfer human like decision knowledge from cognitive models to LLMs through activation engineering during the forward pass, and by fine-tuning LLMs with reinforcement decisions.

Summary

• <mark>Gold</mark>

This study extends previous research in applying large-scale cognitive psychology data to align human-like behaviors in language models. Demonstrates the feasibility of transferring knowledge from cognitive models to LLMs through the developing knowledge transfer framework *LLM-ACTR*.

Coal

- Trustworthiness of the cognitive synthetic agent.
- Generalization.

Future Work Out of Domain Generalization

For

Expanded decision space $D = \{d_1, d_2, ..., d_n\}$ Complex probability model $P(x), x = \{x_1, x_2, ..., x_n\}$?

 $Complex probability modern (x), x = (x_1, x_2, ..., x_n)$

Human like decisions -> guided perception, memory, and goal-setting

Cognitive multi-agent system⁵ in decision support

35

References

- 1. <u>Wu, S.</u>, Oltramari, A., Francis, J., Giles. L., & Ritter. F. E. (2025a). Cognitive-LLMs: Toward human-like Artificial Intelligence by integrating cognitive architectures and large language models for manufacturing decision-making, Journal of Neurosymbolic Artificial Intelligence (accepted pending minor revisions, Jan. 2025).
- 2. Binz, M., Akata, E., Bethge, M., Brändle, F., Callaway, F., Coda-Forno, J., ... & Schulz, E. (2024). Centaur: a foundation model of human cognition. arXiv:2410.20268
- 3. Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. WIREs Cognitive Science, 10(3), e1488.
- 4. <u>Wu, S.</u>, Oltramari, A., & Ritter, F. E. (2024). VSM-ACTR: Toward using cognitive architecture for manufacturing solutions. In International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation (pp. 69-79). Cham: Springer Nature Switzerland. (Best student paper receiver)
- 5. Bucker, A., Ortega-Kral, P., Francis, J., & Oh, J. (2024). Grounding robot policies with visuomotor language guidance. arXiv preprint arXiv:2410.06473

Acknowledgement

- Bosch Center for AI for support on the project.
- Drs. Alessandro Oltramari and Jonathan Francis for continued collaboration and mentorship.
- My advisor Dr. Frank Ritter.