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Introduction: motivation and proposed solution
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Decision Intelligence

Decision 
Support

machines provide some basic tools 
to support human decision making

Decision 
Augmentation

machines play a larger and more 
proactive role in the decision 
process. 

Decision 
Automation

machines perform both the decision 
step and the execution step 
autonomously.
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Challenges for LLM-based Decision Making 

• Hallucinations

• Noisy inference behavior

• Lack of trust

• Bad predictions and increased risks
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What If

Create an assisted AI decision-making tool Cognitive-LLM1 

that combines neural-symbolic representations to encode 
physical knowledge alongside machine learning models. 

Cognitive-LLM aims to augment AI decision-making with 
human cognitive understanding and reflect how humans 
perceive and understand the world through cognition and 
knowledge.

4/6/2025 6



Relating cognitive Psychology to Develop 
Human-Like Decision-Making Support Tool

(2) Use cognitive psychology experiments to align 
language models to the human like behaviors.

(1) Use LLMs' neural representations in 
behavioral psychological science research.
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Centaur2

• Foundation model trained on larger-scale human subject data for psychological 
alignment.

• Data-expensive and computationally expensive experiment (160; 60,092)

• Lacks grounding in metacognition despite its size.

• This motivates us to support the development of human-like decision-making tools 
for companies such as Bosch LLC’s, to fine-tune LLMs for domain-specific human 
like decision-making support tools.
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Decision Intelligence  A Common Model of Cognition

• Cognitive Architectures are computational frameworks that capture the invariant mechanisms of human cognition, 
including those underlying the functions of attention, control, learning, memory, adaptivity, perception and action

• A Cognitive Model is the software artifact resulting from using a Cognitive Architecture to model a human task 

• The “Common Model of Cognition” is a recent development to consolidate four decades of research 
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ACT-R3: the Cognitive Architecture

• “Architecture” refers to the fundamental organizational principle of a complex cognition system.

• Modules to implement the fixed mechanisms of cognition
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Core

Productions, 
if-then rules, 

actionable memory

Chunks, 
factual memory, 
slot-value pairs



Proposed Solution Cognitive LLMs
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Synthetic 
cogAgent

Knowledge 
curation

Knowledge 
transfer

Cognitive
LLMs

Create a synthetic 
CogAgent on the task with 
human like reason, plan, 
and learning.

Cognitive model is used to run 
stochastic simulations of task 
at scale. Key semantic features 
are extracted.

A knowledge transfer pipeline is 
used to calibrate LLM to perform 
decision augmentation for tasks 
in exercise

▪ A combination of different techniques like ontology-based formalization, NLP, 
psychometrics, are used to 1) model the symbolic components of the task, i.e., 
the declarative and procedural knowledge, and 2) set the sub-symbolic 
parameters (e.g., learning rate, similarity matching). 

▪ Before running simulations at scale, tests are conducted on adequacy of symbolic 
and parametric representation 

Neuro-Symbolic Cognitive Method

1 2 3 54

Decision 
Making 
Problem

• Use mechanism of LLMs’ next-token prediction 
and the cognitive decision-making knowledge 
representation
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Cognitive LLM

z

Cognitive LLMs Prototype

A production line consists of two sections with 
potential defect sources: pre-assembly and 
assembly

Pre-assembly takes 40 seconds with an Overall 
Equipment Effectiveness (OEE) rate of 88%

Assembly, on the other hand, takes 44 seconds but 
has a lower OEE rate of 80.1%

To achieve a total assembly time reduction of 4 
seconds, we need to identify which section can be 
optimized with minimal impact on defect rate

It's important to note that reducing cycle time will 
also lead to an increase in line headcount cost
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Recommendations

A: I recommend 
reducing the time 
spent in the 
assembly section 
based on the 
following expert 
rationale: 



Formulate Problems from Business Cases
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Production System Handbook, Value Stream Map



Define a Decision-Making Task

Decision space D={d1​, d2​}

Probability Model      P(x), x={CT, OEE, HC, DR}

Loss function       L(d, x)=W1 ⋅ ΔDR(d) + W2 ⋅ ΔHC(d)

Decisions
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An exemplar of using Cognitive-LLM1 in 
manufacturing decision making
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Cognitive Synthetic Agent: VSM-ACTR
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Reason Production rules for if-then actionable memory, each associated with utility; 
Declarative chunks for factual memory

Plan  If multiple productions compete with expected utility values, the probability of selecting 
production is calculated use SoftMax function.

Reinforcement learning with metacognition

R is a reward function with customized incentives. e.g., rule-based, instance-based, or-hybrid. 
VSM-ACTR use hybrid custom inventive where R(s, f(x)) 

VSM-ACTR4 model’s Reason, Plan, and Learn 
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Learning mechanism
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Data collection and analyze
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Data Collection

• VSM- ACTR’s reasoning steps in real time using a concurrent protocol.

• Data part a is a learned vector of decision-making steps.

• Data part b consists of numerically encoded, reinforced decisions 
from VSM- ACTR
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Data analysis for learned VSM-ACTR vector
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Data analysis for VSM-ACTR decisions
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LLM-ACTR: A developing knowledge 
transfer framework
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Research Question

Can we transfer knowledge form cognitive models to LLMs to reflect 
how human understand the work through cognition and knowledge?
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Learning a cognitive decision-making vector
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Experiments

Baselines Pretrain, random guess, fine-tuned without a cognitive vector

Dataset Decision-making trials simulated on a large scale; held-out data 
spared to assess performance on unseen problems.

Measurements Goodness of fit--Negative log likelihood and predictive 
accuracy
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Results

Model NLL Accuracy

Chance-level 0.6931 0.4836

LlaMa 1.1330 0.3564

Cognitive-LLM 0.6534 0.6576
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Results
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Take away

It is possible to transfer human like decision knowledge from cognitive 
models to LLMs through activation engineering during the forward pass, 
and by fine-tuning LLMs with reinforcement decisions.
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Summary

• Gold
This study extends previous 
research in applying large-scale 
cognitive psychology data to align 
human-like behaviors in language 
models. Demonstrates the 
feasibility of transferring 
knowledge from cognitive models 
to LLMs through the developing 
knowledge transfer framework 
LLM-ACTR.

• Coal
• Trustworthiness of the cognitive 

synthetic agent.
• Generalization.
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Future Work  Out of Domain Generalization

For 

Expanded decision space D = {d1​, d2​, …, dn}

Complex probability model P(x), x = {x1​, x2​, …, xn​} ?

Human like decisions ➔ guided perception, memory, and goal-setting 
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Cognitive multi-agent system5 in decision support
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