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Cognitively-Inspired Decision Intelligence for Manufacturing
The Three Levels of Decision Intelligence

FORBES > INNOVATION

Is Decision Intelligence The
New AI?
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= machines provide some basic tools to support human decision making, such as
alerts, analytics and data exploration. The decisions themselves are made entirely by

= machines play a larger and more proactive role in the decision process. They analyze
the data and generate recommendations and predictions for decision-makers to
review and validate. Humans can make decisions based on the machine’s suggestions,
or they can work cooperatively with the machine to amend the recommendation.

Pascal Bornet is an expert in AI and Automation, best-selling author,

keynote speaker, and CDO at Aera Technology.

Decision

Augmentation

= machines perform both the decision step and the execution step autonomously.
Humans have a high-level overview, monitoring the risks and any unusual activity and
Decision regularly reviewing outcomes to improve the system.

Automation
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Cognitively-Inspired Decision Intelligence for Manufacturing
Our R&D Approach

Realistic Scenarios i ifi i
' Simulation Eramework = CADI projects adopt a unified methodological
(Requirements + Ground Truth) framework to tackle complex problems
= Simulation data is often necessary within the
Synthetic data generation manufacturing domain due to a lack of ground truth for
learning; e.g. related to causal relations and decision

processes
* Neuro-symbolic methods are used to integrate prior
Construction of domain knowledge with machine learning
Neuro-Symbolic Model = \We use realistic scenarios to elicit requirements for

generating synthetic data and evaluate neuro-
symbolic models
= Qur approach is iterative: after each evaluation stage

we can refine the model and improve performance
according to metrics of interest

- We use cognitive architectures to model decisions
. BOSCH



Cognitively-Inspired Decision Intelligence for Manufacturing

Landscape

= Logistic Optimization

= Demand Forecasting

=  Supply Chain Decisions
= Causal Analysis

= Power System Simulation
and Optimization

= Power and load forecasting
= Resource Scheduling

= Q&M monitoring

= Production Scheduling
= Market Decision-Making

= Content Recommendation
= |nventory Pricing

= Sustainability

= Cybersecurity
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flagship products include the industry-leading MindOpt optimization solver, the intelligent
power forecasting tool eForecaster, and the decision-making cloud platform. In addition, our

innovative technologies are applicable to various scenarios, including power system simulation
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Cognitively-Inspired Decision Intelligence for Manufacturing
A Common Model of Cognition

= Cognitive Architectures are computational frameworks that capture the invariant mechanisms of human cognition, including
those underlying the functions of attention, control, learning, memory, adaptivity, perception and action

= A Cognitive Model is the software artifact resulting from using a Cognitive Architecture to model a human task

= The “Common Model of Cognition” is a recent development to consolidate four decades of research

NeuroImage @a A

e o /o P perceptual systems
Analysis of the human connectome data WM PM PM procedural memory
supports the notion of a “Common Model of ® = LTM long-term memory
Cognition” for human and human-like @ WM working memory
intelligence across domains LTM A action systems
Andrea Stocco @ 2, i, Catherine Sibert ¢, Zoe Steine-Hanson ° 1, Natalie Koh €2, John E. Laird 9,
Christian ). Lebiere ©, Paul Rosenbloom
Ztoccc.), Alrl1drea, et al. "Analysis of the human connectome data supports the notion of a “Common Model of Cognition” for human and human-like intelligence across

omains." Neurolmage 235 (2021).

Sibert, Catherine, Holly Sue Hake, and Andrea Stocco. "The structured mind at rest: low-frequency oscillations reflect interactive dynamics between spontaneous brain
activity and a common architecture for task control." Frontiers in Neuroscience 16 (2022)

Kotseruba, luliia, and John K. Tsotsos. "40 years of cognitive architectures: core cognitive abilities and practical applications." Artificial Intelligence Review (2018): 1-78.
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Cognitively-Inspired Decision Intelligence for Manufacturing
ACT-R: the Cognitive Architecture

=  “Architecture” refers to the fundamental organizational principle of a complex cognition system.

= Modules are the sub-systems that t implement the cognitive mechanisms of cognition (e.g. retrieval from memory)
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Cognitively-Inspired Decision Intelligence for Manufacturing
Approach and Goals

" |ntegrating neural and symbolic levels within a genuinely-cognitive system framework can foster high-level
reasoning typically required in complex decision scenarios
— Looking back at decades of work in Al, our working hypothesis is that the modes of neuro-symbolic integration are
methodologically variegate and task-dependent
= Qur current effort revolves around a question in line with most recent literature in neuro-symbolic Al: can
we improve a large model by infusing contextual knowledge at scale? In particular, we are interested in
infusing knowledge of the internal cognitive mechanisms underlying human decisions

= We aim to answer to this question by empirically exploring various approaches

— Fine-tuning LLAMA with cognitive model’s behavior (predictions) and internal state outputs (also called “trace”),
and evaluating performance against relevant baselines (e.g., off-the-shelf pretrained models, human ground truth)
is the goal for the summer

— Novel contributions: elicit relevant semantic features of decision steps extracted from computational cognitive model’s
behavior and replicate them into large models
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Cognitively-Inspired Decision Intelligence for Manufacturing
Use Case: Continuous Improvement Process (CIP)

= Context: Flexible manufacturing for optimizing production lines and layouts
— Dimensions: quantity, quality, time, cost
= Problem: how to optimize operations depends on temporal scales: Plan
morning round (every day) or workshop (every quarter) Identify the
— Morning rounds are time-consuming problem

— Workshops are affected by redundancy and scale in the volume of information, and absence Cld
thereof

= Approach: Neuro-Symbolic Cognitive Architecture implement do
the best CI P
option test
possible
— Cognitive models can replicate human decisions at different levels of expertise, at solutions

integrate learning algorithms with available knowledge
check
— Integrated LLM

= can be finetuned with synthetic data generated by cognitive model (scalability)

— A solution that can support decision makers, especially at the
macro-scale, improving their “situational awareness”

verify effectiveness

= can bootstrap domain transfer of cognitive model (generalizability)

= can be inspected for elicitation of decision steps (explainability)
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Cognitively-Inspired Decision Intelligence for Manufacturing
Use Case: Continuous Improvement Process (CIP)

= Context: Flexible manufacturing for optimizing production lines and layouts
— Dimensions: quantity, quality, time, cost

= Problem: how to optimize operations depends on temporal scales: John Boyd's OODA Loop
morning round (every day) or workshop (every quarter)
— Morning rounds are time-consuming ’ @ \
— Workshops are affected by redundancy and scale in the volume of information, and absence . zOb..S‘i”‘?om
thereof @ -
= Approach: Neuro-Symbolic Cognitive Architecture

Act \ ] Orient
— A solution that can support decision makers, especially at the amarmin i cion e formtien
macro-scale, improving their “situational awareness”

Decide

— Cognitive models can replicate human decisions at different levels of expertise, and
integrate learning algorithms with available knowledge

— Integrated LLM
= can be finetuned with synthetic data generated by cognitive model (scalability)
= can bootstrap domain transfer of cognitive model (generalizability)

= can be inspected for elicitation of decision steps (explainability)
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Cognitively-Inspired Decision Intelligence for Manufacturing
The Task

Eﬂ A production line consists of two sections with potential defect sources: pre-assembly and assembly

Pre-assembly takes 40 seconds with an Overall Equipment Effectiveness (OEE) rate of 88%

g

Assembly, on the other hand, takes 44 seconds but has a lower OEE rate of 80.1%

e To achieve a total assembly time reduction of 4 seconds, we need to identify which section can be optimized
with minimal impact on defect rates.

W It's important to note that reducing cycle time will also lead to an increase in headcount costs
ACS 2024, | Alessandro Oltramari- 06.19.2024 BOSCH



Cognitively-Inspired Decision Intelligence for Manufacturing
CIP-ACT-R: Model Design (in collaboration with Siyu Wu, PSU)

= CIP-ACT-R: ACT-R model applied to Continuous Improvement Process in Bosch Production Systems

= Version 1.0
— Rule-based model in decision making
— Learning to distinguish novice, intermediate expert decision combinations depending on feedback
— Testing of simple rules first and switching to more complex rules later
— The model learns over the course of trials and exhibits individual differences. It demonstrates a human-like learning
progression, showing a steep learning curve at the beginning and gradual improvements later on T
= Version 2.0

— Incorporate metacognitive processes of reflecting and evaluating the progress of the selected approach

— Implementing a reinforcement-learning mechanism in a production-system framework

L Siyu Wu, Alessandro Oltramari, Frank E Ritter. “Toward Using Cognitive Architecture For Manufacturing Solutions”.
Submitted to 17th International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in
Modeling and Simulation (SBP-BRIMs)
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Cognitively-Inspired Decision Intelligence for Manufacturing

VSM-ACT 1.0

Decision Type

Overall Trend of Decision Types over Trials
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Trial

10

12 14 16

We run the model 15 times to better
understand behavior, 15-16 trials per time

We collected data with decision types encoded
as 0, 1, and 2 for, respectively, novice,
intermediate, and expert strategies

Starting at approximately 0 in trial O, the mean
decision type rises to about 0.75 by trial 4 and
reaches around 1.25 by trial 8. Despite slight
fluctuations, the trend continues upward, with
the mean decision type approaching 1.75 by
trial 12 and around 1.9 by trial 16. The
narrowing 95% confidence intervals, ranging
from approximately 0.5 to 2.0 initially to 1.5 to
2.0 in later trials, indicate increasing
consistency among participants’ decision-
making abilities.
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Cognitively-Inspired Decision Intelligence for Manufacturing
VSM-ACT-R 2.0

i = A penalty propagation for the novice strategy
/\ A 0.3 secondsce stems from head count cost inefficient
P2, expert P5, novice B:('Sz):_‘b"(:);;[;m G decision
T | = A (not depicted) reward propagation for the
P3 P6 Z('G,R:;Z[;dwm expert strategy stems from head count cost
efficient decision
o = We are still working on refining reward
\ function in reinforcement learning algorithm
L ek
T fix) = inefficiency
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Llama Attention block b Decision Making Layer C
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(a) We prompt the decision-
making questions into Llama.
(b) use Llama as the base
model and get access to the
last hidden layer for masked
embeddings. (c) build a multi-
classification layer upon the
base model, using ACT-R
decision-making strategy
choices and results as the
target classes and last hidden
layer as features. (d) fine-tune
the Llama model for multi-
classification using LORA. (e)
deploy the fine-tuned model in
new inference tasks.
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Cognitively-Inspired Decision Intelligence
Fine-tuning LLAMA
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Cognitively-Inspired Decision Intelligence for Manufacturing
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Cognitively-Inspired Decision Intelligence for Manufacturing
Our Solution: Integrating Cognitive Architectures & Neuro-Symbolic Al
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Cognitively-Inspired Decision Intelligence for Manufacturing
Outline

= Qur Group

= Motivations

= Use Case

= Approach and Methods
" Future Work
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Cognitively-Inspired Decision Intelligence for Manufacturing
Bosch Research in North America

North America

Research and Technology Center

Technology scouting in America and research

in the areas of

» Human-Machine Intelligence

» Modeling, Design and Control of Energy Systems and Materials
» Secure and Intelligent loT
>

Intelligent and Connected Sensors and Systems
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Cognitively-Inspired Decision Intelligence for Manufacturing
The Causal Analysis and Decision Intelligence Group (CADI)

NEURO-SYMBOLIC Al CAUSAL ANALYSIS DECISION INTELLIGENCE

Bosch has vast amounts of highly valuable
data and rich domain expert knowledge

Neuro-Symbolic Al enables automatic
distillation of insights from data and
exploitation of expert knowledge for causal
analysis and decision intelligence

Current focus on cost savings and process
optimization in manufacturing

Symbolic Knowledge improving Machine Learning

Machi;

Knowledge
Graphs

Learning imp

Causal Al is a set of techniques for
discovering causal relations and making
inferences beyond mere correlation

Causal Neuro-Symbolic Al is the integration

of Causal Al with knowledge graphs and

machine learning

Applications in manufacturing

* Finding root causes for anomalies

= Predicting the quality of products

= QOptimizing process chains

\ /]

Relationships

*CGM: Causal Graph Model

Functional
Model(s)

Parameters

g
o
Expert

Knowledge

Decision intelligence (DI) aims to support,
augment and automate human decisions by
linking data with outcomes

Contemporary Dl is genuinely neuro-symbolic as
it combines machine learning algorithms with
knowledge graphs and rule-based systems

Applications in manufacturing: Continuous
Improvement Process (CIP)

= Guide interventions during ramp-up phase of
production line reconfiguration

= QOptimization of flexible manufacturing
The five elements

of Point CIP C. Structured
/ Communication \
B. Quick E. Process D. Sustainable
Reaction System Confirmation Problem Solving
\ A. Standards /
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